

ESTADO DO RIO GRANDE DO SUL SECRETARIA DA EDUCAÇÃO

8a COORDENADORIA REGIONAL DE EDUCAÇÃO - SANTA MARIA - RS

COLÉGIO ESTADUAL MANOEL RIBAS colegiomaneco@gmail.com - ssemaneco@gmail.com

PROFESSORES: Adriana B. Fortes, Helga M. Pasinato, Maria Joselaine Martins, Paulo Cesar A. Santos

ÁREA: Matemática e suas tecnologias

SÉRIE: 1° Ano

NOME DO ALUNO:...... TURMA:

DISCIPLINA: Matemática

ATIVIDADE REFERENTE AO MÊS: Setembro/2020

Aula Programada - Matemática 1º Ano

Olá pessoal... daremos início ao conteúdo de Função Afim, a primeira função que estudaremos. Selecionamos uma videoaula bem legal para auxiliá-los na melhor compreensão do conteúdo. Lembrando que as vídeoaulas não são obrigatórias, todo o conteúdo necessário para a aprendizagem está descrito no material.

VÍDEO DISPONÍVEL EM:

https://youtu.be/9yH6zCAgHmw

Função Afim - Parte 1

⇒ Definição de função afim

Uma função f, de $\mathbb{R} \to \mathbb{R}$, que a todo número x associa o número ax + b, com a e b reais, $a \neq 0$, é chamada função afim.

$$f: \mathbb{R} \to \mathbb{R}$$

$$y = ax + b$$
 ou $f(x) = ax + b$

Observação: Dizemos que a e b são os coeficientes da função.

coeficiente a

$$f(x) = ax + b \implies \text{coeficiente } b$$

Para que uma função seja afim, ela precisa ter pelo menos o termo com o coeficiente a.

$$f(x) = ax + b$$

ou

$$f(x) = ax$$

• Exemplos:

- * f(x) = 3x + 2, sendo que a = 3 e b = 2
- * f(x) = -2x + 1, sendo que a = -2 e b = 1
- * $f(x) = \frac{1}{2} x$, sendo que a = -1 e $b = \frac{1}{2} \rightarrow \text{Quando não tem}$ nenhum número na frente do x esse número é 1 (um).
- * f(x) = 2x, sendo que a = 2 e $b = 0 \rightarrow Quando o termo que$ representa o coeficiente b não aparece, ele vale 0 (zero).

→ Exercícios:

1. Circule quais das funções $f: \mathbb{R} \to \mathbb{R}$ abaixo são afins.

(a)
$$f(x) = -6x + 5$$
 (c) $f(x) = 11x$ (e) $f(x) = x + \frac{1}{3}$

(c)
$$f(x) = 11$$

(e)
$$f(x) = x + \frac{1}{5}$$

(b)
$$f(x) = 4x^2 + 3$$
 (d) $f(x) = x^2 + 3$ (f) $f(x) = \frac{1}{x} + 6$

(d)
$$f(x) = x^2 + 3$$

(f)
$$f(x) = \frac{1}{x} + 6$$

2. Identifique os coeficientes a e b das funções abaixo:

(a)
$$f(x) = 3x + 81$$

$$a =$$

$$b =$$

(b)
$$f(x) = -2x + 13$$

$$a =$$

$$b =$$

(c)
$$f(x) = -3 + 4x$$

(d) f(x) = -10 + 11x

$$a =$$

$$b =$$
 $b =$

(e)
$$f(x) = 7x$$

$$a =$$

$$h =$$

(f)
$$f(x) = -6x + 12$$

$$a =$$

$$b =$$

f(x) = 3x + 1

3. Para cada item, escreva uma função afim na forma f(x) = ax + b, de acordo com os valores dos coeficientes a e b dados.

(a)
$$a = 3 e b = 1$$

$$\Rightarrow$$

(b)
$$a=4$$
 e $b=0$

$$\Rightarrow$$

(c)
$$a = 1 e b = -2$$

$$\Rightarrow$$

(d)
$$a = -1 e b = \frac{1}{2}$$

(e)
$$a = \frac{1}{2}$$
 e $b = -3$

(f)
$$a = \sqrt{2} e b = 5$$

4. Dada a função f(x) = 2x - 6, de \mathbb{R} em \mathbb{R} . Determine:

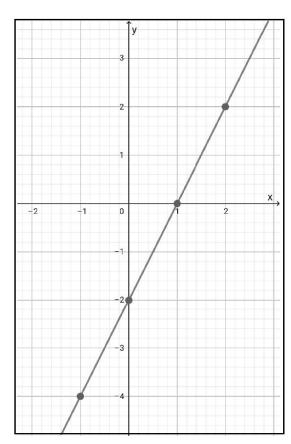
(a)
$$f(2)$$

$$\Rightarrow$$

$$\Rightarrow$$
 $f(2) = 2.(2) - 6 = 4 - 6 = -2$

(b)
$$f(0) =$$

(c)
$$f(1) =$$

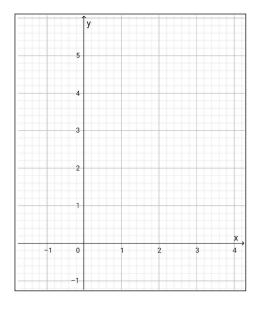

(d)
$$f(-2) =$$

\Rightarrow Gráfico da função afim

Vimos nas aulas anteriores, como marcar pares ordenados no plano cartesiano. Para construir o gráfico de uma função f, representamos pares ordenados em um plano cartesiano. Atribuímos valores para x, obtendo os valores para y, determinando os pares ordenados (x,y). Cada par ordenado corresponde a um ponto no plano cartesiano.

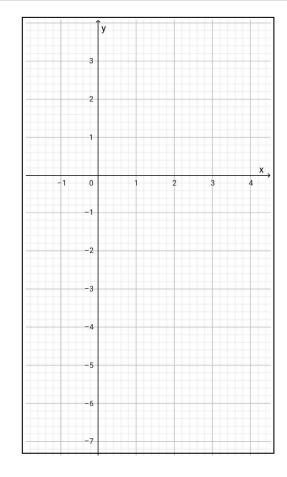
- Exemplo: Observe uma maneira de esboçar o gráfico da função afim dada pela lei $f(x)=2x-2,\,f:\mathbb{R}\to\mathbb{R}.$
- 1º Construir uma tabela;
- 2° Escolher alguns valores para x;
- 3° Substituir os valores de x escolhidos, no x da função, para obter valores de y;
- 4° Formar os pares ordenados (x, y);
- 5° Marcar os pares ordenados no plano cartesiano;
- 6º Unir os pontos formados, no caso da função afim, teremos uma reta.

x	f(x) = 2x - 2	(x,y)
-1	$f(-1) = 2 \cdot (-1) - 2 = -2 - 2 = -4$	(-1, -4)
0	f(0) = 2.(0) - 2 = 0 - 2 = -2	(0, -2)
1	f(1) = 2.(1) - 2 = 2 - 2 = 0	(1,0)
2	f(2) = 2.(2) - 2 = 4 - 2 = 2	(2, 2)


Como seria impossível obter as coordenadas de todos os pontos, determinamos apenas alguns deles, e unimos esses pontos, obtendo o gráfico de f. O gráfico de f é uma reta.

Observação: Podemos unir os pontos pois a função está definida para todos os números reais.

 $\,$ 5. Esboce o gráfico das funções afins a seguir.


(a)
$$f(x) = -x - 3$$

x	f(x) = -x + 3	(x,y)		
-1	f(-1) =	(,)
0	f(0) =	(,)
1	f(1) =	(,)
2	f(2) =	(,)

(b)
$$f(x) = 2x - 4$$

x	f(x) = 2x - 4	(x,y)			
-1	f(-1) =	(,)	
0	f(0) =	(,)	
1	f(1) =	(,)	
2	f(2) =	(,)	
3	f(3) =	(,)	

ESTADO DO RIO GRANDE DO SUL SECRETARIA DA EDUCAÇÃO

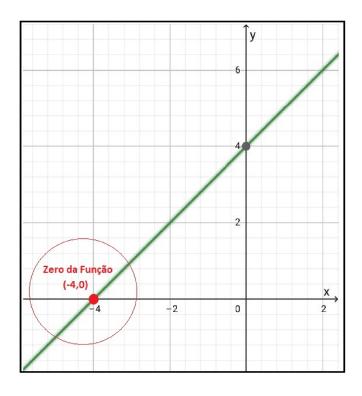
8ª COORDENADORIA REGIONAL DE EDUCAÇÃO - SANTA MARIA – RS COLÉGIO ESTADUAL MANOEL RIBAS

colegiomaneco@gmail.com - ssemaneco@gmail.com

PROFESSORES: Adriana B. Fortes, Helga M. Pasinato, Maria Joselaine Martins, Paulo Cesar A. Santos

ÁREA: Matemática e suas tecnologias DISCIPLINA: Matemática

SÉRIE: 1° Ano ATIVIDADE REFERENTE AO MÊS: Setembro/2020


NOME DO ALUNO:..... TURMA:

Aula Programada - Matemática 1º Ano

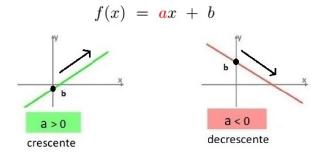
Função Afim - Parte 2

⇒ Zero da função

Observe o gráfico da função $f: \mathbb{R} \to \mathbb{R}$, definida por f(x) = x + 4.

Note que o gráfico dessa função corta o eixo x no ponto de coordenadas (-4,0). Dizemos que -4 é o zero da função. Podemos calcular algebricamente o zero dessa função, basta igualarmos a função a zero e resolvermos a equação do 1° grau.

$$f(x) = 0 \Rightarrow x + 4 = 0 \Rightarrow \boxed{x = -4} \longrightarrow zero da função$$


Zero da Função é o ponto em que a função corta o eixo x.

⇒ Coeficientes da função afim

 $\rightsquigarrow a$ é o **coeficiente angular**, pois está associado à inclinação da reta, isto é, nos diz se a reta é **crescente ou decrescente**.

$$\begin{cases} a > 0 & \text{(n° positivo)} \Rightarrow \text{reta \'e crescente} \\ a < 0 & \text{(n° negativo)} \Rightarrow \text{reta \'e decrescente} \end{cases}$$

 $\rightarrow b$ é o **coeficiente linear** do gráfico e seu valor corresponde ao ponto em que a **reta corta o eixo** y.

⇒ Casos particulares da função afim

 \leadsto Função Linear: é toda função afim f(x)=ax+b, em que $a\in\mathbb{R}$ e b=0.

$$y = ax$$
 ou $f(x) = ax$

• Exemplo: f(x) = 2x

ightharpoonup Função Identidade: é toda função afim f(x) = ax + b, em que a = 1 e b = 0.

$$y = x$$
 ou $f(x) = x$

• Exemplo: f(x) = x

 \leadsto Função Constante: é toda função f(x) = ax + b, em que a = 0 e $b \in \mathbb{R}$.

$$y = b$$
 ou $f(x) = b$

• Exemplo: f(x) = 2

Exercícios:

1. Calcule o zero das funções a seguir:

(a)
$$f(x) = 3x + 12$$
 \Rightarrow $3x + 12 = 0 \rightarrow 3x = -12 \rightarrow$

$$x = \frac{-12}{3} \to \boxed{\mathbf{x} = -4}$$

(b)
$$f(x) = -2x + 16$$

(c)
$$f(x) = -35 + 7x$$

(d)
$$f(x) = -x + 6$$

(e)
$$f(x) = 7x - 28$$

(f)
$$f(x) = -6x + 18$$

2. Classifique as funções como linear, identidade, constante ou apenas afim:

(a)
$$f(x) = -2x + 8$$

(f)
$$f(x) = 12$$

(b)
$$f(x) = 3x$$

$$(g) f(x) = -7x$$

(c)
$$f(x) = x$$

$$(h) f(x) = -x$$

(d)
$$f(x) = -4x + 9$$

(i)
$$f(x) = 8 + 5x$$

(e)
$$f(x) = -3$$
 (j) $f(x) = \frac{1}{2}$

(j)
$$f(x) = \frac{1}{2}$$

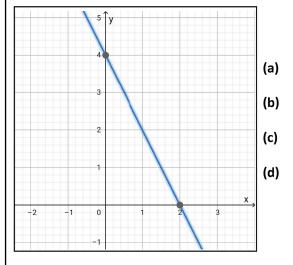
3. Classifique as funções como crescente, decrescente ou constante:

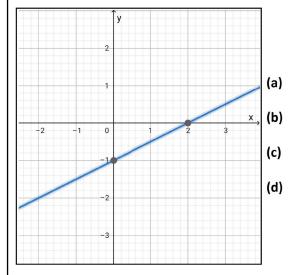
(a)
$$f(x) = 3x + 8$$

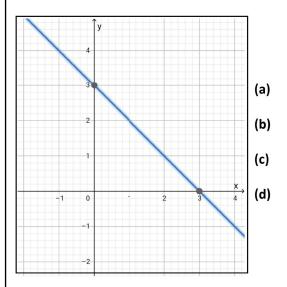
(b)
$$f(x) = -2x + 9$$

(c)
$$f(x) = -3 + 7x$$

(d)
$$f(x) = -10 + 6x$$


(e)
$$f(x) = 7$$


(f)
$$f(x) = -6x + 18$$


4. Dados os gráficos da funções abaixo:

Determine em cada item:

- (a) o zero da função (ponto onde a função corta o eixo x).
- (b) o coeficiente b.
- (c) a função é crescente ou decrescente?
- (d) o ponto onde a função corta o eixo y.

