

COLÉGIO ESTADUAL MANOEL RIBAS

Nome do aluno(a):...... Data:..... Data:..... /.....

Disciplina: Matemática

Professor(a): Elvio de Chaves Pires, Tânia Eich, Paulo Cesar Alves dos Santos e

Fabrício Gonçalves Rodrigues Dorneles

Série: 2º ano, todas as turmas

Atividade 1 – Estudar as páginas 65, 66, 67, 68 e 69

Em 2010, pouco mais de 9 mil pessoas residiam na zona rural de Manaus, enquanto cerca de 1792 mil residiam na zona urbana. Vista da cidade de Manaus (AM), 2015.

Em jornais, revistas e na internet frequentemente encontramos informações numéricas organizadas em forma de tabelas, com linhas e colunas. Vejamos alguns casos.

População nos Censos Demográficos, segundo as Grandes Regiões, as Unidades da Federação e a situação do domicílio – 1980/2010

Ano	Situação do domicílio	BRASIL	Região Norte	Região Nordeste	Região Sudeste	Região Sul	Região Centro- -Oeste
1980¹	Urbana	82013375	3398897	17959640	43 550 664	12153971	4950203
	Rural	39137198	3368352	17459516	9029863	7226155	2053312
1991²	Urbana	110875826	5931567	25753355	55149437	16392710	7 648 757
	Rural	36 04 1 63 3	4325699	16716870	7511263	5724316	1763485
2000²	Urbana	137755550	9002962	32929318	65 441 516	20306542	10075212
	Rural	31 835 143	3890599	14763935	6855835	4783241	1 541 533
2010 ²	Urbana	160925792	11644509	38821246	74696178	23,260,896	12 482 963
	Rural	29830007	4199945	14260704	5668232	4125995	1 575 131

(1) População recenseada. (2) População residente.

Fonte: IBGE, Censo Demográfico 1980, 1991, 2000 e 2010. Disponível em: <www.censo2010.ibge.gov.br/sinopse/index.php?dados=8>,Acesso em: 10 mar. 2016.

COLÉGIO ESTADUAL MANOEL RIBAS

Produção, consumo e importação de feijão (mil toneladas)

	Produção		Cons	umo	Importação	
Ano	Projeção	Limite superior	Projeção	Limite superior	Projeção	Limite superior
2015/16	3363	4022	3357	3778	150	296
2016/17	3334	4267	3364	3959	149	357
2017/18	3345	4290	3371	4100	149	403
2018/19	3355	4313	3379	4219	149	442
2019/20	3366	4335	3386	4326	149	476
2020/21	3376	4358	3393	4423	148	507
2021/22	3387	4380	3400	4512	148	536
2022/23	3397	4403	3407	4596	148	562
2023/24	· 3408	4425	3414	4675	147	587
2024/25	3418	4447	3421	4751	147	611

Fonte: Projeções do agronegócio Brasil 2014/15 a 2024/25 — Projeções de longo prazo. jul. 2015. Disponível em: <www.agricultura.gov.br/arq_editor/PROJECOES_DO_ AGRONEGOCIO_2025_WEB.pdf>. Acesso em: 10 mar. 2016.

Sejam m e n números naturais não nulos.

Uma tabela de $m \cdot n$ números reais dispostos em **m** linhas (filas horizontais) e **n** colunas (filas verticais) é uma matriz do tipo (ou formato) $m \times n$, ou simplesmente matriz $m \times n$.

Representamos usualmente uma matriz colocando seus elementos (números reais) entre parênteses ou entre colchetes.

Vejamos alguns exemplos:

$$A = \begin{bmatrix} 5 & -2 & \frac{1}{2} \end{bmatrix} \text{ é uma matriz } 1 \times 3.$$

$$D = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 2 & 1 & 3 \\ -1 & 0 & 0 & 9 \end{bmatrix} \text{ é uma matriz } 3 \times 4.$$

$$E = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} \text{ é uma matriz } 3 \times 1.$$

$$C = \begin{bmatrix} 6 & 2 \\ 3 & -1 \end{bmatrix}$$
é uma matriz 2 × 2.

SANTA MARIA – RS COLÉGIO ESTADUAL MANOEL RIBAS

Matrizes

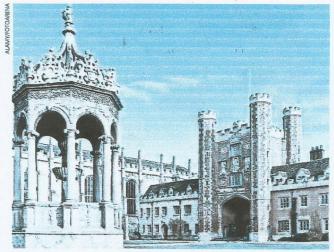
67

Como surgiram as matrizes

As matrizes teriam surgido com a escola inglesa Trinity College, em um artigo do matemático Arthur Cayley (1821-1895), datado de 1858. Vale lembrar, no entanto, que, bem antes, no século III a.C., os chineses já desenvolviam um processo de resolução de sistemas lineares em que aparecia implícita a ideia das matrizes.

Cayley criou as matrizes no contexto de estrutura algébrica (assunto de Matemática do Ensino Superior), sem pensar em suas aplicações práticas que apareceriam posteriormente, como a representação de informações numéricas em tabelas, organizadas segundo linhas e colunas, a computação gráfica, as imagens digitais etc.

Fonte de pesquisa: BOYER, Carl B. História da Matemática. 3ª ed. São Paulo: Edgard Blucher, 2010.



Trinity College, Cambridge, Inglaterra, 2015.

Representação de uma matriz

Consideremos uma matriz $\bf A$ do tipo m \times n. Um elemento qualquer dessa matriz pode ser representado pelo símbolo $\bf a_{ij}$, no qual o índice $\bf i$ refere-se à linha e o índice $\bf j$ refere-se à coluna em que se encontra tal elemento.

Vamos convencionar que as linhas são numeradas de cima para baixo, e as colunas, da esquerda para a direita.

De modo geral, uma matriz ${\bf A}$ do tipo $m\times n$ é representada por ${\bf A}=\left(a_{ij}\right)_{m\times n'}$ em que ${\bf i}$ e ${\bf j}$ são números inteiros positivos tais que $1\leqslant i\leqslant m$, $1\leqslant j\leqslant n$, e ${\bf a}_{ij}$ é um elemento qualquer de ${\bf A}$. Acompanhe o exemplo a seguir.

Seja a matriz
$$A = \begin{pmatrix} -1 & 0 \\ -2 & 5 \\ 3 & 4 \end{pmatrix}_{3 \times 2}$$

- O elemento que está na linha 1, coluna 1, é $a_{11} = -1$.
- O elemento que está na linha 1, coluna 2, é $a_{12} = 0$.
- O elemento que está na linha 2, coluna 1, é $a_{21} = -2$.
- O elemento que está na linha 2, coluna 2, é $a_{22} = 5$.
- \circ O elemento que está na linha 3, coluna 1, é $a_{31}=3$.
- O elemento que está na linha 3, coluna 2, é a₃₂ = 4.

COLÉGIO ESTADUAL MANOEL RIBAS

EXERCÍCIO RESOLVIDO

1 Escreva a matriz $A = (a_{ij})_{2 \times 3}$, em que $a_{ij} = i - j$. **Solução:**

A é uma matriz do tipo 2 × 3 e pode ser genericamente representada por A = $\begin{pmatrix} a'_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$.

Fazendo
$$a_{ij} = i - j$$
, temos:

$$a_{11} = 1 - 1 = 0$$

$$a_{12} = 1 - 2 = -1$$

$$a_{12} = 1 - 3 = -2$$

$$a_{21} = 2 - 1 = 1$$

$$a_{22} = 2 - 2 = 0$$

$$a_{23} = 2 - 3 = -1$$

Assim,
$$A = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{pmatrix}$$
.

Matrizes especiais

Vejamos alguns tipos de matrizes especiais.

- Matriz linha: é uma matriz formada por uma única linha.
 - A = $(0 \ 2 \ 4)$ é uma matriz linha 1 × 3.
 - B = $\begin{bmatrix} 0 & -3 \end{bmatrix}$ é uma matriz linha 1 × 2.
- Matriz coluna: é uma matriz formada por uma única coluna.

$$A = \begin{bmatrix} 2 \\ -4 \\ 6 \\ -8 \end{bmatrix}$$
é uma matriz coluna 4 × 1.

$$B = \begin{bmatrix} 3 \\ \frac{1}{4} \\ 0 \end{bmatrix}$$
 é uma matriz coluna 3 × 1.

Matriz nula: é uma matriz cujos elementos são todos iguais a zero.

Pode-se indicar a matriz nula m \times n por $0_{m \times n}$.

$$0_{2\times3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
é a matriz nula 2 × 3.

$$0_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 é a matriz nula 2 × 2.

- Matriz quadrada: é uma matriz que possui número de linhas igual ao número de colunas.
- A = $\begin{pmatrix} 4 & 3 \\ 1 & \sqrt{2} \end{pmatrix}$ é uma matriz quadrada 2 × 2. Dizemos que **A** é matriz quadrada de ordem 2.

COLÉGIO ESTADUAL MANOEL RIBAS

Matrizes

11/11

69

$$B = \begin{pmatrix} 5 & -1 & \frac{1}{3} \\ -2 & 0 & 7 \\ \sqrt{3} & 1 & 4 \end{pmatrix}$$
é uma matriz quadrada 3 × 3. Dizemos que **B** é quadrada de ordem 3.

Seja A uma matriz quadrada de ordem n. Temos que:

os elementos de **A** cujo índice da linha é igual ao índice da coluna constituem a **diagonal principal** de **A**.

Se \mathbf{A} é uma matriz quadrada de ordem 3, os elementos \mathbf{a}_{11} , \mathbf{a}_{22} e \mathbf{a}_{33} formam a diagonal principal de \mathbf{A} :

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

os elementos da matriz **A** cuja soma dos índices da linha e da coluna é igual a n + 1 constituem a **diagonal secundária** de **A**.

Retomando o exemplo anterior, os elementos \mathbf{a}_{13} , \mathbf{a}_{22} e \mathbf{a}_{31} formam a diagonal secundária de \mathbf{A} .

$$\mathsf{A} = \begin{bmatrix} \mathsf{a}_{11} & \mathsf{a}_{12} & \mathsf{a}_{13} \\ \mathsf{a}_{21} & \mathsf{a}_{22} & \mathsf{a}_{23} \\ \mathsf{a}_{31} & \mathsf{a}_{32} & \mathsf{a}_{33} \end{bmatrix}$$

Matriz transposta

Dada uma matriz $A = (a_{ij})_{m \times n'}$ chama-se **transposta de A** (indica-se por A^t) a matriz:

$$A^t = \left(a^\iota_{ji}\right)_{n \times m}$$

tal que $a_{ii}^{i} = a_{ii}$ para todo i e todo j.

Em outras palavras, a matriz **A**¹ é obtida a partir de **A** trocando-se, ordenadamente, suas linhas pelas colunas.

• A transposta de A =
$$\begin{pmatrix} 1 & 3 \\ 5 & 9 \end{pmatrix}$$
 é A^t = $\begin{pmatrix} 1 & 5 \\ 3 & 9 \end{pmatrix}$.

Para a matriz **A**, observe que: $a_{11} = 1 = a_{11}^{i}$

$$a_{12} = 3 = a_{21}^{i}$$

$$a_{21} = 5 = a_{12}^{i}$$

$$a_{22} = 9 = a_{22}^{1}$$

• A transposta de B =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 é B^t = $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

A transposta de C =
$$\begin{pmatrix} 4 & 0 & 1 \\ -1 & 2 & 3 \\ 5 & -4 & 7 \end{pmatrix} e C^{t} = \begin{pmatrix} 4 & -1 & 5 \\ 0 & 2 & -4 \\ 1 & 3 & 7 \end{pmatrix}$$

COLÉGIO ESTADUAL MANOEL RIBAS

Atividade 2 – Assistir ao vídeo do link abaixo sobre Matrizes. https://portaldaobmep.impa.br/index.php/modulo/ver?modulo=75

Atividade 3 – Resolver a lista abaixo com 11 exercícios. (È necessário o desenvolvimento dos exercícios)

EXERCÍCIOS

- 1 Dê o tipo (formato) de cada uma das seguintes

a)
$$A = \begin{bmatrix} 1 & 3 \\ -7 & 2 \\ 4 & 2 \end{bmatrix}$$
 d) $D = \begin{bmatrix} 1 & 5 & 7 \\ 3 & 1 & 4 \\ -2 & 9 & 6 \end{bmatrix}$

b) B =
$$\begin{pmatrix} 3 & -4 & 2 & 9 \end{pmatrix}$$
 e) E = $\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$

e)
$$E = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$$
 f) $F = \begin{bmatrix} 1 & 4 & 2 & -3 \\ 2 & 7 & 0 & -1 \\ 3 & 9 & 0 & -5 \end{bmatrix}$

2 Em cada caso, determine o elemento a 22, se existir:

a)
$$A = \begin{bmatrix} 1 & 0 & 7 \\ -5 & 4 & 3 \\ -1 & 2 & 5 \end{bmatrix}$$
 c) $A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$$

b)
$$A = \begin{bmatrix} 4 \\ 3 \\ -7 \\ 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 4 \\ 3 \\ -7 \\ 1 \end{bmatrix}$$
 d) $A = \begin{bmatrix} 4 & 10 & 7 \\ 5 & 1 & -1 \end{bmatrix}$

- **3** Escreva a matriz $A = (a_{ij})_{2 \times 2}$, em que $a_{ij} = 3i 2j$.
- 4 Determine a matriz $B = (b_{ii})_{3\times 2}$, sendo $b_{ij} = 2 + i + j$.
- 5 Qual é a soma dos elementos da matriz $C = (c_{ij})_{2 \times 4^{\prime}}$ em que $c_{ii} = 1 + i - j$?
- 6 Em cada caso, obtenha a transposta da matriz dada:

a)
$$A = \begin{bmatrix} 7 & -4 \\ 1 & 0 \end{bmatrix}$$
 e) $E = \begin{bmatrix} 0 & -2 \\ 1 & 11 \\ 0.5 & 7 \\ 3 & 4.1 \end{bmatrix}$

b) B =
$$\begin{bmatrix} 6 & 2 \\ 1 & 0 \\ 4 & -1 \end{bmatrix}$$
 f) F = $\begin{bmatrix} 5 \\ 7 \\ 1 \\ 0 \\ 3 \end{bmatrix}$

$$c) = \begin{bmatrix} 0 & 3 & -9 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 0 & 3 & -9 \\ 0 & -1 & 5 \end{bmatrix}$$
 g) $G = \begin{bmatrix} 2 & 1 & -2 \\ -3 & 1 & 2 \\ 3 & -1 & 2 \end{bmatrix}$

d)
$$D = (-8 \ 7 \ 5)$$

7 Seja A = $(a_{ij})_{3\times 2^i}$ em que $a_{ij} = 2i + 3j$. Escreva a

- Qual é o elemento \mathbf{a}_{46} da matriz $\mathbf{A} = (\mathbf{a}_{ij})_{8\times8'}$ em que $a_{ij} = (-1)^{i+j} \cdot \frac{2j}{i}$?
- 9 Seja a matriz $A = (a_{ij})_{3\times 3}$, em que $a_{ij} = i \cdot j$. Forneça os elementos que pertencem às diagonais principal e secundária de A.
- 10 Na matriz seguinte, estão representadas as quantidades de sorvetes de 1 bola e de 2 bolas comercializados no primeiro bimestre de um ano em uma sorveteria:

$$A = \begin{pmatrix} 1320 & 1850 \\ 1485 & 2040 \end{pmatrix}$$

Cada elemento a, dessa matriz representa o número de unidades do sorvete do tipo i (i = 1 representa uma bola e i = 2, duas bolas) vendidas no mês j (i = 1 representa janeiro e i = 2, fevereiro).

- a) Quantos sorvetes de duas bolas foram vendidos em janeiro?
- b) Em fevereiro, quantos sorvetes de duas bolas foram vendidos a mais que os de uma bola?
- c) Se o sorvete de uma bola custa R\$ 3,00 e o de duas bolas custa R\$ 5,00, qual foi a arrecadação bruta da sorveteria no primeiro bimestre com a venda desses dois tipos de
- 11 A matriz D seguinte representa as distâncias (em quilômetros) entre as cidades X, Y e Z:

$$D = \begin{bmatrix} 0 & 15 & 27 \\ 15 & 0 & 46 \\ 27 & 46 & 0 \end{bmatrix}$$

Cada elemento a, dessa matriz fornece a distância entre as cidades i e j, com $\{i, j\} \subset \{1, 2, 3\}$. Se a cidade X é representada pelo número 1, Y por 2 e **Z** por 3:

- a) determine as distâncias entre X e Y, Z e X, e Y e Z.
- b) qual é a transposta da matriz D?